Can one reconstruct the

seesaw parameters?

(the masses, mixing matrix and Yukawa couplings of the ν_R)

Sacha Davidson

seesaw25 à Paris,
juin 2004

based mostly on JHEP 0109 (2001) 013, with A Ibarra
Why is this an interesting question?

- the \((3 \, \nu_R, \text{no triplet})\) seesaw today...
 - we observe small neutrino masses
 - "attractive" mechanism consistent with small \(m_\nu\)

- the seesaw predicts
 - \(m_\nu\) \text{ majorana (0}\nu\text{2}\beta)\)
 - if no SUSY (LHC?), then flavour, \(\text{CP} \propto m_\nu\):
 \(\mu \rightarrow e\gamma\) small, EDMs small, \(\nu\) mag. mos small
 - with SUSY:

\[\text{can be observable}\]

these are consistency checks

- to "test" a model, one needs
 1. determine model parameters from data
 2. make a prediction for an additional measurement
 3. confirm prediction

\(\Rightarrow\) \text{can seesaw parameters be determined from data?}\
NO

(realistic answer)

...but in the best of all (SUSY) dream worlds ??? ...yes...

⇒ HOW? and WHY DOES IT WORK?
Outline

- parametrisations of the (type I) seesaw :
 - RH parameters (usual top-down)
 - LH parameters (? “bottom-up” ?)
 - (à la Casas-Ibarra)
 - fallacies thereof... the puppet show?

 ⇒ what is special about the seesaw?

- “reconstruction” in SUSY
 - in principle (LH → RH)
 - in practise...

- “reconstruction” without SUSY? (Broncano et al)

- (leptogenesis as a “test”?)

- summary
input RH parameters

the usual seesaw parametrisation (3 ν_R, no triplet scalars):

1. 3 ν_R with masses M_i
2. a Yukawa $[Y_\nu]_{RL}$ with eigenvalues $\{y_1, y_2, y_3\}$
3. a unitary matrix $[V_R] : D_{Y_\nu} \leftrightarrow D_M$
4. Y_e eigenvalues $\{y_e, y_\mu, y_\tau\}$
5. a unitary matrix $V_L : D_{Y_e} \leftrightarrow D_{Y_\nu}$, (or, $U : D_Y \leftrightarrow D_{m_\nu}$)

\[\nu_R \text{ bases : } D_{Y_\nu}, \quad D_M \quad \nu_L \text{ bases : } D_{Y_\nu}, \quad D_{Y_e} \]
parameters: 9 real eigenvals, 6 angles, 6 phases

\[\Rightarrow [m_\nu] = V_L^T D_Y V_R^* D_M^{-1} V_R^\dagger V_Y V_L^\dagger (Y_e \text{ basis}) \]
\[= U^* D_{m} U^\dagger \]

so in summary:

RH inputs: $D_M, [V_R], D_{Y_\nu}$, also LH inputs $[V_L], D_{Y_e}$
parameters: $12 + 9 = 21$.
can calculate: U, D_m
Input LH parameters

The seesaw treats ν_L and ν_R symmetrically... so:

1. 3 ν_L with masses m_i
2. a Yukawa $[Y_L]_{RL}$ with eigenvalues $\{y_1, y_2, y_3\}$
3. a unitary matrix $[W_L]$: $D_{Y_L} \leftrightarrow D_m$
4. Y_e eigenvalues $\{y_e, y_\mu, y_\tau\}$
5. a unitary matrix $V_L : D_{Y_e} \rightarrow D_{Y_L}$, or, $U : D_{Y_e} \rightarrow D_{m_N}$

\[M^{-1} = D_{Y_L}^{-1}W_L^* D_m W_L^\dagger D_{Y_L}^{-1} = V_R^* D_M^{-1} V_R^\dagger \]

In summary:

LH inputs: $D_m, [W_L], D_{Y_L}, U, D_{Y_e}$
parameters: $12 + 9 = 21$

can calculate D_M, V_R

LH particle masses are $\lesssim m_W$...so...

1) do weak-scale observables depend on $W_L (= V_L U)$ and D_Y ?
2) is there any (realistic) hope of extracting V_L and D_Y from data?
conclusions one should not draw (d’après moi)

1. “leptogenesis is independent of LH parameters”
 proof:
 \[\epsilon = \sum_{J} \frac{\Im \{ [V_R^\dagger D_Y^2 V_R]_{1J} \} g \left(\frac{M_j^2}{M_1^2} \right)}{[V_R^\dagger D_Y^2 V_R]_{11}} \]
 no LH parameters appear. QED.

2. “light ν observables are independent of RH parameters”
 proof:
 \[P(\nu_\beta \rightarrow \nu_\alpha) = f(U_{\beta k}, U_{\alpha j}, ..., m_j^2 - m_k^2) \]
 no RH parameters appear. QED.

1. \(D_m \) and \(U \) can be calculated from \(\nu_R \) parameters, so obviously depend on them. Whereas leptogenesis does not care about \(Y_\nu \), so does not care about \(U \). Explicitly: \(U \) does not appear in the formula for \(\epsilon \) in any LH parametrisation that includes \(W_L : D_{Y_\nu} \rightarrow D_m \).

2. but — in the “top-down” parametrisation using \((D_M, V_R, D_{Y_\nu}, U, D_{Y_e}) \), \(V_R \) does not appear in \(P(\nu_\beta \rightarrow \nu_\alpha) \).

1. specious argument! At \(\Lambda \sim M \), \(D_{Y_e} \) and \(D_{Y_\nu} \) are coupling constants in the LH sector. \(D_m \) is not. So a “correct” top-down parametrisation uses \(V_L \) not \(U \).

2. ah-ha! but at \(\Lambda \sim m_W \) we know \(U \) and might get \(V_L \) in SUSY, so \(W_L = V_L U \) is dependent in LH parametrisation. So \(\epsilon(U) \) ...

what is correct choice of “independent” parameters?

\[\begin{align*}
D_m & \leftrightarrow U \\
 & \rightarrow D_{Y_e} \leftrightarrow V_L \rightarrow D_{Y_\nu}
\end{align*} \]
the SUSY See-Saw

- suppose soft scalar masses universal at M_{GUT}: $\sim m_o^2 I$
- Renormalisation Group running will induce flavour violation at the weak scale in slepton masses:

\[
\begin{align*}
\begin{array}{c}
\nu_R \\
\tilde{\nu}_i \cdots \bar{Y}_\nu \cdots Y_\nu \cdots \tilde{\nu}_j \\
\tilde{h}
\end{array}
\end{align*}
\]

\[
[m^2_{\tilde{u}}]_{ij} \simeq (\text{diag part}) - \frac{3m_0^2 + A_0^2}{8\pi^2} (Y_\nu^\dagger)_{ik} (Y_\nu)_{kj} \log \frac{M_{GUT}}{M_k}
\]

$Y_\nu^\dagger Y_\nu$ is the only source of lepton flavour violation in $[m^2_{\tilde{u}}]_{ij}$

\Rightarrow extract $Y_\nu^\dagger Y_\nu \propto [V_L]^\dagger D_Y^2 [V_L]$ from $[m^2_{\tilde{u}}]$ (in principle)

$\Rightarrow \{D_{Y_\nu}, V_L\}$ from sleptons, $\{D_{Y_e}, U, D_m\}$ from leptons
reconstruction in practice

from the leptons

- $D_{\ell e} : m_\tau, m_\mu, m_e$
 (could determine $\tan \beta$ in SUSY?)

- $U : \theta_{23}, \theta_{12}, \theta_{13}, \delta, \alpha, \beta$
 with a pure, high intensity ν beam: θ_{13}, δ?

- $D_{m} : m_3 > m_2 > m_1$
 know two Δm^2s, need pattern and absolute mass scale
 $0 \nu 2\beta$, cosmology?

from the sleptons

- $V_L : |[V_L]_{23}|, |[V_L]_{23}|, |[V_L]_{12}|$

 if superpartners are “light” (observable at LHC, in $\ell_j \rightarrow \ell_i \gamma$)
 then from LFV, might extract $[\tilde{m}_e^2]_{\tau \mu}, [\tilde{m}_e^2]_{\mu e}, [\tilde{m}_\tau^2]_{\tau e}$

 if SUSY at $\Lambda > M_3$, then $[\tilde{m}_e^2]_{\alpha \beta} \sim [V_L]_{\alpha 3}[V_L]_{\beta 3} y_3^2$
 \[\Rightarrow \text{extract } ? |[V_L]_{23}|, |[V_L]_{13}|, y_3 \]
 ACK—other contributions to non-universal $[\tilde{m}_e^2]$??

- $D_{y_i} : y_3, y_2, y_1$
 ...only y_3 makes significant contribution to RGEs

- 3 phases of $V_L : \varphi_1, \varphi_2, \varphi_3$
 CP in charged sleptons? φEDMs φ, $\varphi \nu - \bar{\nu}$ oscillations φ
 but there are other sources of CP that can contribute...
Summary

the (type I) seesaw treats ν_L and ν_R symmetrically, so can be described by masses, mixing angles and couplings of ν_R, or ν_L.

LH particles are kinematically accessible ($m \lesssim m_W$), so...

can one reconstruct the ν_R sector?

if SUSY is broken at $\Lambda > M_3$, then the high scale parameters (Y_ν and M) generate $[m_\nu]$, and contribute to $[m_\nu^2]$ via the RGEs.

There is a texture model independent parametrisation of the SUSY seesaw, that allows the renormalisable interactions of the ν_R to be reconstructed from weak-scale masses:

\[[m_\nu], [m_\nu^2] \leftrightarrow Y_\nu, M \]

in practice: This reconstruction requires exact universality of the soft masses (!), and some contributions are unobservably small (\ll exptal sensitivity)

in the non-SUSY case (Broncano et al) Y_ν and M can be reconstructed from $[m_\nu]$ and dimension 6 operators $\propto M^{-2}$.