Can one reconstruct the seesaw parameters?

(the masses, mixing matrix and Yukawa couplings of the ν_R)

Sacha Davidson

seesaw25 à Paris, juin 2004

based mostly on JHEP 0109 (2001) 013, with A Ibarra also: Nucl Phys B648 (2003) 345, JHEP 0303 (2003) 037, JHEP 0403 (2004) 020

Why is this an interesting question?

- the (3 ν_R , no triplet) seesaw today...
 - we observe small neutrino masses
 - "attractive" mechanism consistent with small m_{ν}
- · the seesaw predicts
 - m_{ν} majorana $(0\nu 2\beta)$
 - if no SUSY (LHC?), then flavour, ${\cal EP} \propto m_{\nu}$: $\mu \to e \gamma$ small, EDMs small , ν mag. mos small

- with SUSY:

can be observable

these are consistency checks

- · to "test" a model, one needs
 - 1. determine model parameters from data
 - 2. make a prediction for an additional measurement
 - 3. confirm prediction
- ⇒ can seesaw parameters be determined from data?

...but in the best of all (SUSY) dream worlds ??? ...yes...

⇒ HOW? and WHY DOES IT WORK?

Outline

- parametrisations of the (type I) seesaw :
 - RH parameters (usual top-down)
 - LH parameters (? "bottom-up" ?)
 - (à la Casas-Ibarra)
 - fallacies thereof... the puppet show?
 - ⇒ what is special about the seesaw?
- "reconstruction" in SUSY
 - in principle (LH → RH)
 - in practise...
- "reconstruction" without SUSY? (Broncano et al)
- (leptogenesis as a "test"?)
- summary

input RH parameters

NB: no texture

the usual seesaw parametrisation (3 ν_R , no triplet scalars):

- 1. 3 ν_R with masses M_i
- 2. a Yukawa $[Y_{
 u}]_{RL}$ with eigenvalues $\{y_1,y_2,y_3\}$
- 3. a unitary matrix $[V_R]:D_{Y_{\nu}} \leftrightarrow D_M$

4. Y_e eigenvalues $\{y_e, y_\mu, y_\tau\}$

5. a unitary matrix $V_L:D_{Y_e}\leftrightarrow D_{Y_{\nu}},$ (or, $U:D_Y\longleftrightarrow D_{m_{\nu}})$

 ν_R bases : $D_{Y_{\nu}}$, D_M ν_L bases : $D_{Y_{\nu}}$, D_{Y_e} parameters: 9 real eigenvals, 6 angles, 6 phases

$$\Rightarrow [m_{\nu}] = V_L^T D_Y V_R^* D_M^{-1} V_R^{\dagger} D_Y V_L^{\dagger} (D_{Ye} \ basis)$$
$$= U^* D_m U^{\dagger}$$

so in summary:

RH inputs: D_M , $[V_R]$, $D_{Y_{\nu}}$, also LH inputs $[V_L]$, D_{Y_e} parameters: 12+9=21. can calculate: U, D_m

input LH parameters

the seesaw treats ν_L and ν_R symmetrically...so:

- 1. 3 ν_L with masses m_i
- 2. a Yukawa $[Y_{\nu}]_{RL}$ with eigenvalues $\{y_1, y_2, y_3\}$
- 3. a unitary matrix $[W_L]:D_{Y_{\nu}}\leftrightarrow D_m$
- 4. Y_e eigenvalues $\{y_e, y_\mu, y_\tau\}$
- 5. a unitary matrix $V_L:D_{Y_e}\to D_{Y_\nu},$ or, $U:D_{Y_e}\to D_{m_\nu}$

in summary:

LH inputs:
$$D_m$$
, $[W_l]$, $D_{Y_{\nu}}$, U , D_{Y_e} , parameters: $12+9=21$ can calculate D_M , V_R

LH particle masses are $\lesssim m_W$...so...

- 1) do weak-scale observables depend on W_L (= $V_L U$) and D_Y ?
- 2) is there any (realistic) hope of extracting V_L and D_Y from data?

conclusions one should not draw (d'après moi)

 "leptogenesis is independent of LH parameters" proof:

$$\epsilon = \sum_{J} \frac{\Im\{[V_{R}^{\dagger}D_{Y}^{2}V_{R}]_{1J}^{2}\}}{[V_{R}^{\dagger}D_{Y}^{2}V_{R}]_{11}} g\left(\frac{M_{J}^{2}}{M_{1}^{2}}\right)$$

no LH parameters appear. QED.

 "light ν observables are independent of RH parameters" proof:

$$P(\nu_{\beta} \rightarrow \nu_{\alpha}) = f(U_{\beta k}, U_{\alpha j}, ..., m_j^2 - m_k^2)$$

no RH parameters appear. QED.

- 1. D_m and U can be calculated from ν_R parameters, so obviously depend on them. Whereas leptogenesis does not care about Y_e , so does not care about U. Explicitly: U does not appear in the formula for ϵ in any LH parametrisation that includes $W_L: D_{Y_{\nu}} \leftrightarrow D_m$.
- 2. but in the "top-down" parametrisation using $(D_M, V_R, D_{Y_{\nu}}, U, D_{Y_e})$, V_R does not appear in $P(\nu_{\beta} \rightarrow \nu_{\alpha})$.
- 1. specious argument! At $\Lambda \sim M$, D_{Y_e} and $D_{Y_{\nu}}$ are coupling constants in the LH sector. D_m is not. So a "correct" top-down parametrisation uses V_L not U.
- 2. ah-ha! but at $\Lambda \sim m_W$ we know U and might get V_L in SUSY, so $W_L = V_L U$ is dependent in LH parametrisation. So $\epsilon(U)$...

7 77 777 7777777

what is correct choice of "independent" parameters?

the SUSY See-Saw

- suppose soft scalar masses universal at M_{GUT} : $\sim m_o^2 {f I}$
- Renormalisation Group running will induce flavour violation at the weak scale in slepton masses:

$$\left[m_{\tilde{\nu}}^2\right]_{ij} \simeq (\text{diag part}) - \frac{3m_0^2 + A_0^2}{8\pi^2} (\mathbf{Y}_{\nu}^{\dagger})_{ik} (\mathbf{Y}_{\nu})_{kj} \log \frac{M_{GUT}}{M_k}$$

 $Y_{
u}^{\dagger}Y_{
u}$ is the only source of lepton flavour violation in $[m_{ ilde{
u}}^2]_{ij}$

$$\Rightarrow$$
 extract $Y_{\nu}^{\dagger}Y_{\nu} \propto [V_L]^{\dagger}D_Y^2[V_L]$ from $[m_{\tilde{\nu}}^2]$ (in principle)

 $\Rightarrow \{D_{Y_{\nu}}, V_{L}\}$ from sleptons, $\{D_{Y_{e}}, U, D_{m}\}$ from leptons

reconstruction in practise

apologies to ald

known probably maybe ummm

from the leptons

- D_{Ye}: m_τ, m_μ, m_e
 (could determine tan β in SUSY?)
- $U: \theta_{23}, \theta_{12}, \theta_{13}, \delta, \alpha, \beta$ with a pure, high intensity ν beam: θ_{13}, δ ?

D_m: m₃ > m₂ > m₁
 know two Δm²s, need pattern and absolute mass scale
 0ν2β, cosmology?

from the sleptons

- $V_L: |[V_L]_{23}|, |[V_L]_{23}|, |[V_L]_{12}|$
 - if superpartners are "light" (observable at LHC, in $\ell_j \to \ell_i \gamma$) then from LFV, might extract $[\tilde{m}_{\tilde{\nu}}^2]_{\tau\mu}, [\tilde{m}_{\tilde{\nu}}^2]_{\mu e}, [\tilde{m}_{\tilde{\nu}}^2]_{\tau e}$
 - if SUSY at $\Lambda > M_3$, then $[\tilde{m}_{\tilde{\nu}}^2]_{\alpha\beta} \sim [V_L]_{\alpha3} [V_L]_{\beta3}^* y_3^2$. \Rightarrow extract $?|[V_L]_{23}|, |[V_L]_{13}|, y_3$ ACK—other contributions to non-universal $[\tilde{m}_{\tilde{\nu}}^2]$???
- D_{yν}: y₃, y₂, y₁
 ...only y₃ makes significant contribution to RGEs
- 3 phases of $V_L: \varphi_1, \varphi_2, \varphi_3$ CP in charged sleptons? ??EDMs ?? , ??? $\tilde{\nu}$ — $\tilde{\tilde{\nu}}$ oscillations ??? but there are other sources of CP that can contribute...

Summary

the (type I) seesaw treats ν_L and ν_R symmetrically, so can be described by masses, mixing angles and couplings of ν_R , or ν_L .

LH particles are kinematically accessible ($m \lesssim m_W$), so... can one reconstruct the ν_R sector?

if SUSY is broken at at $\Lambda > M_3$, then the high scale parameters (Y_{ν}) and M generate $[m_{\nu}]$, and contribute to $[\tilde{m}_{\tilde{\nu}}^2]$ via the RGEs. There is a texture model independent parametrisation of the SUSY seesaw, that allows the renormalisable interactions of the ν_R to be reconstructed from weak-scale masses:

$$[m_{\nu}], [m_{\tilde{\nu}}^2] \leftrightarrow Y_{\nu}, M$$

in practise: This reconstruction requires exact universality of the soft masses (!), and some contributions are unobservabley small (\ll exptal sensitivity)

in the non-SUSY case (Broncano et al) Y_{ν} and M can be reconstructed from $[m_{\nu}]$ and dimension 6 operators $\propto M^{-2}$.