Experimental Evidence for Neutrino Mass

Karsten M. Heeger

Lawrence Berkeley National Laboratory
“Standard Model” Neutrino Physics

1914 Electron Spectrum in β decay is continuous
1930 Pauli postulates that a new particle is emitted
1933 Fermi names the new particle neutrino and introduces four-fermion interaction
1956 Reines and Cowan discover the neutrino
1962 At least two neutrinos: $\nu_e \neq \nu_\mu$
1989 Measurement of Z width at CERN $\rightarrow N_\nu = 3$
2002 tau neutrino discovered.

Neutrino Astrophysics

1938 Bethe & Critchfield $p + p \rightarrow ^2H + e^+ + \nu_e$
1946 Pontecorvo, 1949 Alvarez propose neutrino detection through $^{37}\text{Cl} + \nu_e \rightarrow ^{37}\text{Ar} + e^-$
1960’s Ray Davis builds chlorine detector
John Bahcall, generates SSM & solar n flux predictions

“…to see into the interior of a star and thus verify directly the hypothesis of nuclear energy generation in stars…”
First Indication of ‘Non-Standard’ Neutrinos

Solar Neutrino Flux Measurements

4p + 2e → 4He + 2νₑ + 26.7 MeV (pp chain)

1960’s

- Ray Davis’ Chlorine detector
- First Solar Model calculations

For 30 years

CC and ES measurements of solar νₑ

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Year</th>
<th>Detection Reaction</th>
<th>Ratio Exp/BP2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine (127 t)</td>
<td>1970-1995</td>
<td>37Cl + νₑ → 37Ar + e⁻</td>
<td>0.34 ± 0.03</td>
</tr>
<tr>
<td>Kamiokande (680t)</td>
<td>1986-1995</td>
<td>νₓ + e⁻ → νₓ + e⁻</td>
<td>0.54 ± 0.08</td>
</tr>
<tr>
<td>SAGE (23 t)</td>
<td>1990-1995</td>
<td>71Ga + νₑ → 71Ge + e⁻</td>
<td>0.55 ± 0.05</td>
</tr>
<tr>
<td>Gallex + GNO (12 t)</td>
<td>1991-1995</td>
<td>71Ga + νₑ → 71Ge + e⁻</td>
<td>0.57 ± 0.05</td>
</tr>
<tr>
<td>SuperK (22kt)</td>
<td>1996-1998</td>
<td>νₓ + e⁻ → νₓ + e⁻</td>
<td>0.451 ± 0.017 -0.015</td>
</tr>
</tbody>
</table>

(CC) 37Cl + νₑ → 37Ar + e⁻
(ES) 71Ga + νₑ → 71Ge + e⁻

→ Data are incompatible with solar models: Solar Neutrino Problem
Neutrino Oscillation

Neutrino States

Mass States
First
Second

ν_1
ν_2

Weak States
First
Second

ν_e
ν_μ

Time Evolution

$P_{i\rightarrow i} = \sin^2 2\theta \sin^2\left(1.27\Delta m^2 \frac{L}{E}\right)$

Oscillation as an indication of massive neutrinos
Experimental Studies

Natural Sources

The Sun
- 37Cl
- GALLEX
- SAGE

Atmospheric Neutrinos
- IMB
- Soudan
- MACRO

Accelerators
- K2K
- Opera
- Chorus (LSND)

Nuclear Reactors
- Bugey
- Goesgen
- ILL
- Chooz
- Palo Verde
- KamLAND

Man-Made Sources

Man-Made Sources

- Kamiokande
- SuperKamiokande
- SNO

- Cosmic-ray shower
- Atmospheric neutrino source
- $\pi^+ \rightarrow \mu^+ + \nu_\mu$
- $\pi^- \rightarrow \mu^- + \bar{\nu}_\mu$
- $\pi^- \rightarrow \nu_e + \bar{\nu}_e + \bar{\nu}_\mu$
- $\pi^- \rightarrow \nu_e + \bar{\nu}_e + \nu_\mu$

- Primary neutrino source $p + p \rightarrow D + \nu_e + \bar{\nu}_e$
- $\sim 10^8$ kilometers

Solar core

Earth

Underground ν_e detector
Atmospheric Neutrino Studies

$E_\nu \sim 0.5 - 5 \text{ GeV}$
$L_{\text{down}} \sim 10 - 100 \text{ km}$
$L_{\text{up}} \sim 10,000 \text{ km}$
Super-Kamiokande

Atmospheric Neutrino Studies

Detect neutrinos through charged-current interaction in detector
Super-Kamiokande

Atmospheric Neutrino Studies

Deficit of upward-going ν_μ

Zenith angle dist. of Atmospheric ν flux

$\nu_\mu \rightarrow \nu_\tau$ 2-flavor osc.

$\sin^2 2\theta = 1.0$, $\Delta m^2 = 2.0 \times 10^{-3}$ eV2

Null oscillation

Karsten Heeger, LBNL

E$_{\nu} >$ a few GeV

Up/Down Symmetry
KEK to Kamioka (K2K) Experiment

Accelerator-based long baseline neutrino oscillation experiment to test atmospheric oscillations

<table>
<thead>
<tr>
<th>atm</th>
<th>K2K</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>$10-10^4$ km</td>
</tr>
<tr>
<td>E_n</td>
<td>0.1~100 GeV</td>
</tr>
<tr>
<td>Δm^2</td>
<td>$10^{-1}\sim10^{-4}$ eV2</td>
</tr>
<tr>
<td>ν_e/ν_μ</td>
<td>50%</td>
</tr>
</tbody>
</table>

data from 1999-2001

expected: 80.1 events
observed: 56 events

reconstructed E_v

Allowed region

Best fit point 2.8×10^{-3}
Super-Kamiokande L/E Analysis

Searching for Direct Evidence of Oscillations

Neutrino oscillation
Neutrino decay
Neutrino decoherence

![Graphs and data from Super-Kamiokande L/E Analysis showing
consistent with standard zenith angle analysis
90% allowed regions]

First dip is observed as expected from neutrino oscillation

Best-fit expectation
$\Delta m^2 = 2.4 \times 10^{-3}, \sin^2 2\theta = 1.00$
$\chi^2_{\text{min}} = 37.8/40$ d.o.f
Atmospheric Neutrino Oscillations

Atmospheric ν data explained extremely well by oscillations

- primarily $\nu_\mu \rightarrow \nu_\tau$ conversion
- mixing angle θ_{23} is near maximal
- $\Delta m^2 \sim 2 \times 10^{-3}$ eV2
Elastic Scattering: \(\nu_x + e^- \rightarrow \nu_x + e^- \)

Data/SSM = 0.451 ± 0.005 (stat) + 0.016 - 0.014 (sys.)
Sudbury Neutrino Observatory

2092 m to Surface (6010 m w.e.)

PMT Support Structure, 17.8 m
9456 20 cm PMTs
~55% coverage within 7 m

Acrylic Vessel, 12 m diameter

1000 Tonnes D$_2$O

Need solar model-independent measurement.

Need experiment that measures ν_e and $\nu_{\mu,\tau}$ separately.
Neutrino Detection in SNO

Neutrino Interactions on Deuterium and their Flavor Sensitivity

Charged-Current (CC)

\[\nu_e + d \rightarrow e^- + p + p \]

\[E_{\text{thresh}} = 1.4 \text{ MeV} \]

Measurement of energy spectrum

Neutral-Current (NC)

\[\nu_x + d \rightarrow \nu_x + n + p \]

\[E_{\text{thresh}} = 2.2 \text{ MeV} \]

Measures total ^8B flux from Sun

Elastic Scattering (ES)

\[\nu_x + e^- \rightarrow \nu_x + e^- \]

Strong directional sensitivity
SNO - Enhanced Neutron Detection with NaCl

- Higher capture cross section
- Higher energy release
- Many gammas

\[
n + ^{35}\text{Cl} \rightarrow ^{35}\text{Cl}^* + g
\]

\[
n + ^{36}\text{Cl} \rightarrow ^{36}\text{Cl} + g
\]

\[
\sigma = 0.0005 \text{ b}
\]

\[
\sigma = 44 \text{ b}
\]

\[
^{2}\text{H} + n \rightarrow 8.6 \text{ MeV}
\]

\[
^{3}\text{H} \rightarrow 6.0 \text{ MeV}
\]

\[
^{36}\text{Cl} \rightarrow \text{gamma radiation}
\]
Solar Neutrino Physics with SNO

What can we learn from measuring the NC interaction rate (total active 8B solar neutrino flux) at SNO?

- Total 8B ν flux (NC) *versus* ν_e flux (CC)

 \[
 \frac{[CC]}{[NC]} = \frac{[\nu_e]}{[\nu_e + \nu_\mu + \nu_\tau]} \rightarrow \text{Test of neutrino flavor change}
 \]

- Total flux of solar 8B neutrinos

 \rightarrow Test of solar models

- Diurnal time dependence

 \rightarrow Test of neutrino oscillations

- Distortions of neutrino energy spectrum

 \rightarrow Test of neutrino oscillations
SNO Signal Extraction

Data from July 26, 2001 to Oct. 10, 2002

254.2 live days
Blind analysis performed

3055 candidate events:
1339.6 $^{+63.8}_{-61.5}$ CC
1344.2 $^{+69.8}_{-69.0}$ NC
170.3 $^{+23.9}_{-20.1}$ ES
The Solution to the Solar Neutrino Problem: Neutrinos Change Flavor

2/3 of initial solar ν_e are observed at SNO to be $\nu_{\mu,\tau}$. Results from SNO, 2002.
Flavor Content of 8B Solar Neutrino Flux

8B Standard Solar Model (SSM01)\hspace{1cm} 5.05 \times 10^6 \text{ cm}^{-2} \text{ s}^{-1}$
NC Salt Constrained\hspace{1cm} 4.90 \pm 0.38 \times 10^6 \text{ cm}^{-2} \text{ s}^{-1}$
NC Salt Unconstrained\hspace{1cm} 5.21 \pm 0.47 \times 10^6 \text{ cm}^{-2} \text{ s}^{-1}$

CC/NC Ratio

0.306 \pm 0.026 (stat) \pm 0.024 (sys)

Standard Solar Model predictions for total 8B flux in excellent agreement!
Oscillation Interpretation of Solar Neutrino Data

Energy-dependent effect

Neutrinos interact with matter in Sun and Earth (MSW)

\[
\begin{pmatrix}
 \nu_e \\
 \nu_\mu \\
 \nu_\tau
\end{pmatrix} = U_{23} \times U_{13} \times \begin{pmatrix}
 \cos \theta_{12} & \sin \theta_{12} & 0 \\
 -\sin \theta_{12} & \cos \theta_{12} & 0 \\
 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
 \nu_1 \\
 \nu_2 \\
 \nu_3
\end{pmatrix}
\]

hep-ph/0402025
Solar Neutrino Oscillations

Flavor conversion of solar $\nu_e \rightarrow \nu_{\mu,\tau}$

- mixing angle θ_{12} is large but not maximal, $\Delta m_{12} \sim 7 \times 10^{-5}$ eV2
- matter effects enhance oscillation
- other modes for solar neutrino flavor transformation (sterile, RSFP, CPT ...) can play only a subdominant role.
Neutrino Oscillation Experiments

Reactor and Beamstop Neutrinos
\[\nu_\mu \Rightarrow \nu_s \Rightarrow \nu_e \]

Atmospheric and Reactor Neutrinos
\[\nu_\mu \Rightarrow \nu_\tau \]

Solar and Reactor Neutrinos
\[\nu_e \Rightarrow \nu_{\mu,\tau} \]

Large mixing favored

LMA solution can be tested with reactor neutrinos

Status: Summer 2002
Search for Neutrino Oscillations with Reactor Neutrinos

50 Years of Reactor Neutrino Physics

1953 First reactor neutrino experiment

1956 “Detection of Free Antineutrino”, Reines and Cowan
→ Nobel Prize in 1995

No signature of neutrino oscillations until 2002!

Results from solar experiments suggest study of reactor neutrinos with a baseline of ~ 70 km
Reactor Antineutrinos

From Japanese Reactors

Kashiwazaki

Takahama

Ohi

~ 79% of ν flux from distance 138-214 km.
~ 6 $\overline{\nu}_e$ per fission
~ $2 \times 10^{20} \nu_e/GW_{th}$-sec

Spectrum from Principal Reactor Isotopes

~ 200 MeV per fission

Neutrino Flux at KamLAND

~ 79% of ν flux from distance 138-214 km.
~ 6.7% from one reactor at 88 km.
KamLAND - Kamioka Liquid Scintillator Antineutrino Detector

Uses reactor neutrinos to study $\bar{\nu}$ oscillation with a baseline of $L \sim 140\text{-}210 \text{ km}$

Coincidence Signal: $\bar{\nu}_e + p \rightarrow e^+ + n$

- **Prompt** e^+ annihilation
- **Delayed** n capture, $\sim 190 \mu s$ capture time

KamLAND studies the disappearance of $\bar{\nu}_e$ and measures:
- interaction rate
- energy spectrum
Event Selection

Delayed Energy Window

from $^{12}\text{C}(n,\gamma)$

$t_{\text{cap}} = 188 \pm 23 \text{ msec}$

delayed energy window

Muon veto

2 sec VETO for 6mϕ cylinder
93.6% eff.

2 sec VETO for all volume

Vertex and Time Correlation

$R < 5 \text{ m}$

$0.5 < |\text{d}T| < 660 \mu\text{sec}$

$|\text{d}R| < 1.6 \text{ m}$

$|\text{d}Z| > 1.2 \text{ m}$
First Direct Evidence for Reactor $\bar{\nu}_e$ Disappearance

KamLAND provides evidence for neutrino oscillations together with solar experiments.
Is the KamLAND Neutrino Spectrum Distorted?

Search for a Unique Signature of Neutrino Oscillation

2-ν oscillation: best-fit

No oscillation, flux suppression

![Graphs showing data and best oscillation fit consistent at 93% C.L. as determined by Monte Carlo](image_url)

\[\chi^2 / 8 \text{ d.o.f.} = 0.31 \]

Data and best oscillation fit consistent at 93% C.L.

Data and best oscillation fit consistent at 53% C.L. as determined by Monte Carlo
Oscillation Parameters *Before* and *After* KamLAND

Before KamLAND

Before KamLAND, the region favored by solar ν experiments is shown. The agreement between oscillation parameters for $\bar{\nu}$ and ν is indicated.

After KamLAND

After KamLAND, KamLAND's 95% exclusion by rate and 95% allowed by rate+shape are shown. The agreement between oscillation parameters for $\bar{\nu}$ and ν is also indicated.
Determination of Oscillation Parameters $\Delta m_{12}^2, \theta_{12}$

Before SNO-Salt

With SNO-Salt

Assume CPT

$|\Delta m_{\nu}^2 - \Delta m_{\nu}^2| < 1.3 \times 10^{-3}$ eV2 at 90% CL

\rightarrow LMA I only at $> 99\%$ CL

\rightarrow Maximal mixing ruled out (5.4σ)

Possible Sterile Admixture?

KamLAND + SNO-Salt $\quad \sin^2 \eta_{\text{sterile}} < 0.09$
Defining θ_{12} and Δm_{12}^2 with SNO and KamLAND

Is it all consistent?

Day/Night variation,
Spectrum from MSW Solar
versus
Reactor Oscillation …
Evidence for Mixing of Massive Neutrinos

- Neutrinos are not massless
- Evidence for neutrino flavor conversion $\nu_e \leftrightarrow \nu_\mu \leftrightarrow \nu_\tau$
- Experimental results show that neutrinos oscillate
Cosmological Implications

Experimental Results

Atmospheric neutrinos: \[\Delta m_{23}^2 \approx 2.0 \times 10^{-3} \text{ eV}^2 \]
\[\therefore \text{one neutrino mass} > 0.04 \text{ eV} \]

SNO + KamLAND: \[\Delta m_{12}^2 \approx 7.3 \times 10^{-5} \text{ eV}^2 \]
\[\therefore \text{one neutrino mass} > 0.008 \text{ eV} \]

Limits on “\(\nu_e\) mass” give: \[m(\nu_{1,2,3}) < 2.2 \text{ eV} \]

Implications

\[\sum \text{of neutrino masses:} \quad 0.048 < m_1+m_2+m_3 < 6.6 \text{ eV} \]

Laboratory limit on \(n\) fraction of universe closure density: \[0.001 < \Omega_\nu < 0.13 \]

Large-scale structure limit: \[0.13 < \Omega_\nu < 0.02 \]
Cosmological Information on Neutrino Mass

Neutrinos’ contribution to the Universe’s energy density

\[\Omega_\nu h^2 = \sum_i m_i / 95.3 \text{ eV} \]

Combining WMAP and large scale structure

\[\Omega_\nu h^2 < 0.0076 \text{ eV} \quad (95\% \text{ CL}) \]

If \(m_{\nu e} \sim m_{\nu \tau} \) (degenerate neutrino species)

\[m_\nu < 0.23 \text{ eV} \]

Cosmological neutrino mass limits probe Dirac and Majorana \(\nu \) masses!

Mass limits comparable to \(0\nu\beta\beta \) experiments.
Cosmological Density

- Dark Energy: 0.7 ± 0.1
- Matter: 0.3 ± 0.1

Matter Composition

- Cold Dark Matter: 0.35 ± 0.1
- Non-Baryonic Dark Matter
- Baryons: 0.037 ± 0.001
- Dark Baryons
- Stars: ~0.003

Observed Particle Dark Matter

- Neutrinos:
 - Direct neutrino mass measurements + oscillation experiments
 - WMAP
 - < 0.0076
 - > 0.003

Ωνh² Light Neutrino Density from direct neutrino mass measurements + oscillation experiments + WMAP
We have learned …

- ν transform flavor

- Atmospheric ν data explained extremely well by oscillations
 - primarily $\nu_\mu \rightarrow \nu_\tau$ conversion
 - mixing angle θ_{23} is very large, possibly maximal
 - $\Delta m^2 \sim 2 \times 10^{-3} \text{ eV}^2$

- Solar ν_e change primarily to other active ν’s
 - if oscillations, mixing angle θ_{12} is large but not maximal and $\Delta m_{12} \sim 7 \times 10^{-5} \text{ eV}^2$ (LMA solution)
 - matter predicted to play a role in transformation
 - other modes for solar neutrino flavor transformation (sterile, RSFP, CPT …) can play only a subdominant role.

“…convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects”

G.L. Fogli et. al, hep-ph/0309100
Other oscillations?

\[\nu_\mu \Rightarrow \nu_\tau \]

\[\nu_\mu \Rightarrow \nu_e \]

\[\nu_e \Rightarrow \nu_\mu, \nu_\tau \]

Cannot be explained by 3 active neutrinos!

L = 30m
E = ~40 MeV

\[\Delta m^2 = 0.3 \text{ to } 3 \text{ eV}^2 \]

\[P_{\text{OSC}} = 0.3 \% \]

Will be checked by MiniBoone at FNAL (2005?)

Karsten Heeger, LBNL
SeeSaw25 - June 10, 2004
$U_{\text{MNSP}}, \theta_{13}, \text{ and } \mathcal{CP}$

U_{MNSP} Neutrino Mixing Matrix

$$U = \begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3}
\end{pmatrix}$$

Dirac phase

$$\begin{pmatrix}
\cos \theta_{13} & 0 & e^{-i\delta_{\text{CP}}} \sin \theta_{13} \\
0 & 1 & 0 \\
-e^{i\delta_{\text{CP}}} \sin \theta_{13} & 0 & \cos \theta_{13}
\end{pmatrix}$$

Majorana phases

$$\begin{pmatrix}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{pmatrix} \times \begin{pmatrix}
1 & 0 & 0 \\
0 & e^{i\alpha/2} & 0 \\
0 & 0 & e^{i\alpha/2 + i\beta}
\end{pmatrix}$$

atmospheric, K2K reactor and accelerator SNO, solar SK, KamLAND $0\nu\beta\beta$

- $\theta_{23} = \sim 45^\circ$
- $\tan^2 \theta_{13} < 0.03$ at 90% CL
- $\theta_{12} \sim 32^\circ$
- θ_{13} yet to be measured, determines accessibility to CP phase

Ref: Smirnov
Neutrino Masses: What do we know?

Oscillation experiments - indicate \(\nu \) do have mass
- set the relative mass scale,
- set minimum for the absolute scale. \(m_i > \sqrt{\Delta m_{atm}^2} \approx 50 \text{meV} \)

\[|U_{e3}|^2 \]

\[m_1^2 \quad m_2^2 \quad m_3^2 \]

atmospheric \(~3 \times 10^{-3} \text{eV}^2\) \(~3 \times 10^{-3} \text{eV}^2\)

\[\Delta m_\odot^2 \quad \Delta m_{atm}^2 \]

Karsten Heeger, LBNL
SeeSaw25 - June 10, 2004
Constraining the Neutrino Mass

No fundamental reason why neutrinos must be massless.

But why are they much lighter than other particles?
Direct Neutrino Mass Searches

Model-Independent Neutrino Masses from β-decay Kinematics

$$N(E_e) \propto p_e E_e (E_0 - E_e) \sqrt{(E_0 - E_e)^2 - m_\nu^2 c^4}$$

Search for a distortion in the shape of the β-decay spectrum in the end-point region
Mainz Neutrino Mass Experiment

Current best limit $m_\nu < 2.2$ eV
Neutrinoless Double Beta Decay ($0\nu\beta\beta$)

The Next Frontier in Neutrino Physics

ν mode: conventional 2nd order process in nuclear physics

0ν mode: hypothetical process only if $M_\nu \neq 0$ AND $\nu = \bar{\nu}$

$\Gamma_{2\nu} = G_{2\nu} |M_{2\nu}|^2$

$\Gamma_{0\nu} = G_{0\nu} |M_{0\nu}|^2 \left< m_{\beta\beta} \right>^2$

G are phase space factors

$G_{0n} \sim Q^5$

important physics
Neutrinoless Double Beta Decay ($0\nu\beta\beta$)

The Next Frontier in Neutrino Physics

2ν mode: conventional 2nd order process in nuclear physics

0ν mode: hypothetical process only if $M_\nu \neq 0$ AND $\nu = \bar{\nu}$

The only known practical approach to discriminate Majorana vs Dirac ν
Several Proposed $0\nu\beta\beta$ Experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Mass (kg)</th>
<th>Type of Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>COBRA</td>
<td>Te-130</td>
<td>10 kg CdTe semiconductors</td>
</tr>
<tr>
<td>DCBA</td>
<td>Nd-150</td>
<td>20 kg Nd layers between tracking chambers</td>
</tr>
<tr>
<td>NEMO</td>
<td>Mo-100, Various</td>
<td>10 kg of bb isotopes (7 kg of Mo)</td>
</tr>
<tr>
<td>CAMEO</td>
<td>Cd-114</td>
<td>1 t CdWO$_4$ crystals</td>
</tr>
<tr>
<td>CANDLES</td>
<td>Ca-48</td>
<td>Several tons CaF$_2$ crystals in liquid scint.</td>
</tr>
<tr>
<td>CUORE</td>
<td>Te-130</td>
<td>750 kg TeO$_2$ bolometers</td>
</tr>
<tr>
<td>EXO</td>
<td>Xe-136</td>
<td>1 ton Xe TPC (gas or liquid)</td>
</tr>
<tr>
<td>GEM</td>
<td>Ge-76</td>
<td>1 ton Ge diodes in liquid nitrogen</td>
</tr>
<tr>
<td>GENIUS</td>
<td>Ge-76</td>
<td>1 ton Ge diodes in liquid nitrogen</td>
</tr>
<tr>
<td>GSO</td>
<td>Gd-160</td>
<td>2 t Gd$_2$SiO$_5$:Ce crystal scint. in liquid scint.</td>
</tr>
<tr>
<td>Majorana</td>
<td>Ge-76</td>
<td>500 kg Ge diodes</td>
</tr>
<tr>
<td>MOON</td>
<td>Mo-100</td>
<td>Mo sheets between plastic scint., or liq. scint.</td>
</tr>
<tr>
<td>Xe</td>
<td>Xe-136</td>
<td>1.56 t of Xe in liq. Scint.</td>
</tr>
<tr>
<td>XMASS</td>
<td>Xe-136</td>
<td>10 t of liquid Xe</td>
</tr>
</tbody>
</table>

The $<m_{\beta\beta}>$ limits depend on background assumptions and matrix elements which vary from proposal to proposal.
A Recent Claim for $0\nu\beta\beta$ in ^{76}Ge

5 detectors of overall 10.96 kg enriched to 86-88% in the $\beta\beta$-emitter ^{76}Ge

$$T = (0.69 - 4.18) \times 10^{25} \text{ years} \ (3 \sigma)$$

Majorana ν Mass

$$m_\nu = (0.24 - 0.58) \text{ eV} \ (3 \sigma)$$

$$m_\nu \text{ best} = 0.44 \text{ eV}$$

hep-ph/0403018
Massive Neutrinos? Yes! \(\nu \) transform flavor

\[
\begin{align*}
\nu_e &\rightarrow \nu_{\mu,\tau} \\
\nu_\mu &\rightarrow \nu_\tau
\end{align*}
\]

Data explained well by oscillation, other solutions disfavored.

What else?

• What are the absolute masses?
• What is the level ordering of 2,3 (or 1,3)?
• Are \(\nu \)'s Dirac or Majorana particles?
 \[\rightarrow \text{Direct mass measurements and } 0\nu\beta\beta\]

• What are the values of \(\Delta m^2, U_{ij} \)?
 \[\rightarrow \text{Reactor and accelerator experiments}\]
• How many mass states? Are there sterile \(\nu \)?
 \[\rightarrow \text{MiniBoone}\]
A very exciting time for neutrino physics

More to come …