Searching for the absolute neutrino mass scale

Seesaw25, Paris, 11.06.04

Christian Weinheimer

Helmholtz-Institut für Strahlen- u. Kernphysik, Universität Bonn, Germany

email: weinheimer@hiskp.uni-bonn.de

Search for the neutrino mass scale

Cosmological bounds

Neutrinoless double β decay

Direct neutrino mass determination

Summary

Absolute v mass determination

Absolute v mass determination

Search for the absolute neutrino mass scale

1) Cosmology very sensitive, but model dependent

Neutrino mass from cosmology

 $\Omega_{\rm u}h^2$

same data, more conservative asumptions

J. Beacom et al. astro-ph/0404585: no upper limit on $\Sigma m(v_i)$ from cosmology neutrino annihilate into light or massless scalars Neutrino mass from cosmology

Conclusions:

- neutrinos: hot Dark Matter
- important for
 - evolution of universe
 - intepretation of LSS + CMB (correlations with other cosmol. pararameters)
- important quantity: $\Sigma m(v_i)$
- model dependent limits: $\Sigma m(v_i) < 0.7 - 2.2 \text{ eV}$ or $\Sigma m(v_i) > 0$

01

0.01

0.02

 $\Omega_{\mu}h^{2}$

0.03

need laboatory experiment on absolute neutrino mass

Search for the absolute neutrino mass scale

1) Cosmology very sensitive, but model dependent

Search for the absolute neutrino mass scale

1) Cosmology very sensitive, but model dependent

2) Search for $0\nu\beta\beta$

very sensitive, but needs v to be of Majorana-type sensitive to coherent sum: $m_{ee}(v) = |\sum |U_{ei}^2| e^{i\alpha(i)} m(v_i)|$

 \Rightarrow partial cancelation possible

NEMO3 in the Frejus tunnel

Start of data taking: February 2003

- 20 sectors: foils with $\beta\beta$ emitters (1)¹⁰⁰Mo (7.2kg), ⁸²Se (1kg), ¹¹⁶Cd (0.4kg), ¹³⁰Te (0.6kg)
- tracking in magnetic field (2)6180 Geiger cells
- calorimeter: plastic scintillators 3

3500

3000

E1+E2, keV

Events / 51 keV NEMO3 **Background substracted** 700 2B2v Monte Carlo 600 650 hours 13750 events 500 SB=40First results on $2\nu\beta\beta$ of ^{100}Mo 400 300 Erpected sensitivity on $0\nu\beta\beta$: 200m_{ee} < 0.1 -0.4 eV ¹⁰⁰Mo: 100 m_{ee} < 0.6 -1.2 eV ⁸²Se: 0 500 1000 1500 2000 2500 MO100, EE-internal

Cuoricino in Gran Sasso

41 kg TeO₂ cryo detectors

data taking since April 2003

expected in 3 years: $m_{ee} < 0.25 - 0.60 \text{ eV}$

Evidence for $0\nu\beta\beta$ at Heidelberg Moscow Exp.?

Klapdor-Kleingrothaus et al., MPLA 37 (2001) 2409 (s.also comments: hep-ex/0202018, hep-ph/0205228, hep-ph/0205293)

Nearly same data as earlier (54kgy: 8/1990 - 5/2000) but now asumptions of peaks in [2000,2080] keV:

 \Rightarrow background level is lower

fit only [2032,2046] keV with background and peak

 \Rightarrow peak at $0\nu\beta\beta$ signal position (2039 keV)

$$\Rightarrow T_{_{1/2}}^{_{_{0v}}} = (0.8 - 18.3) \ 10^{_{25}} \ y$$

- \Rightarrow m_{ee} = (0.11 0.56) eV
- \Rightarrow m(v_e) = (0.05 3.4) eV
- $\Rightarrow (fast) degenerierte v?$ (jeweils 95 % C.L.)

Evidence for $0\nu\beta\beta$ at Heidelberg Moscow Exp.?

Klapdor-Kleingrothaus et al., MPLA 37 (2001) 2409 (s.also comments: hep-ex/0202018, hep-ph/0205228, hep-ph/0205293)

Nearly same data as earlier (54kgy: 8/1990 - 5/2000) but now asumptions of peaks in [2000,2080] keV:

 \Rightarrow background level is lower

fit only [2032,2046] keV with background and peak

 \Rightarrow peak at $0\nu\beta\beta$ signal position (2039 keV)

Peak search

New, data up to 2003: 72 kgy, with new data selection, new calibration Klapdor-Kleingrothaus et al., PL B586 (2004) 198

⇒ Peak at 2038.1(5) keV (expected: 2039.006(50) keV) Multi-Gauss. Fit: 4.2 σ significance for 0 $\nu\beta\beta$, T^{0 ν} = (0.34-20.3) 10²⁵ y

 \Rightarrow m_{ee} = 0.1-0.9 eV (99.7% C.L., incl. uncertainty of M_{nucl})

b90

Future $0\nu\beta\beta$ projects

 $m_{ee} \sim (1/enrichment)^{1/2} \cdot (\Delta E \cdot bg/M \cdot t)^{1/4}$ $\Rightarrow mass \approx 1t$, high enrichment, very low background

- GENIUS/New ⁸⁶Ge ββ exp. at Gran Sasso ⁷⁶Ge, 1t, 86% enrichted cryo liquid active shielding, GTF started
- Majorana
 ⁷⁶Ge, 0.5t, 86% enriched
 segmented HPGe diodes with PSA
 prototype under development
- MOON (Japan, USA, Rußland)
 ¹⁰⁰Mo, 3.3t, 85% enriched foils between tracking detectors and calorimeters

- EXO
 ¹³⁶Xe, 10t, 75% enriched
 TPC, optical detection of barium ions
- CUORE
 ¹³⁰Te, 760 kg, 34% natural or enriched
 TeO₂ cryo detectors
- many more proposals e.g. Cobra

These experiment expect large background improvements expected sensitivity on m_{ee}: 10 - 100 meV

Search for the absolute neutrino mass scale

1) Cosmology very sensitive, but model dependent

2) Search for $0\nu\beta\beta$

very sensitive, but needs v to be of Majorana-type sensitive to coherent sum: $m_{ee}(v) = |\sum |U_{ei}^2| e^{i\alpha(i)} m(v_i)|$

 \Rightarrow partial cancelation possible

Search for the absolute neutrino mass scale

1) Cosmology very sensitive, but model dependent

2) Search for $0\nu\beta\beta$

very sensitive, but needs v to be of Majorana-type sensitive to coherent sum: $m_{ee}(v) = |\Sigma| |U_{ei}^{2}| e^{i\alpha(i)} m(v_{i})|$

 \Rightarrow partial cancelation possible

3) Direct neutrino mass determination: No further assumptions needed

use $E^2 = p^2c^2 + m^2c^4 \Rightarrow m^2(v)$ is observable mostly

• Time-of-flight measurements (v from supernova) SN1987a (large Magellan cloud) $\Rightarrow m(v_e) < 23 \text{ eV}$ (PDG 2002)

• Kinematics of weak decays

measure charged decay products, use energy/momentum conservation $\Rightarrow m^2(v) \beta$ -decay searchs for m(v_e) - tritium β decay spectrometers

- ¹⁸⁷Re bolometers

Direct Determination of $m(v_e)$

 Need:
 very high energy resolution & very high luminosity &

 very high luminosity &
 >

 very low background
 (o

MAC-E-Filter (or bolometer for ¹⁸⁷Re)

β decay compared to $0\nu\beta\beta$

• β decay yields:

 $m^2(v_e) := \Sigma |U_{ei}|^2 |\cdot m^2(v_i)$, which determines very precisely $\Sigma m(v_i)$

- $0\nu\beta\beta$ experiments might be more sensitive, but they cannot determine $\Sigma m(v_i)$ so well
- $m(v_e)$ and m_{ee} are complementary observables

Cryo bolometer experiments with ¹⁸⁷Re

Multiple purpose, scalable new detector technology

basic idea: \Rightarrow single final state:

 β emitting crystal = cryodetector detection of total energy except v

Choice of β emitter:

¹⁸⁷Re: $E_0 = 2.5 \text{ keV} (t_{1/2} = 5 \ 10^{10} \text{y})$

MANU2 (F. Gatti et al., Genua)

- Re metalic crystal (1.5 mg)
- BEFS observed (F.Gatti et al., Nature 397 (1999) 137)
- sensitivity:

now: m(v) < 26 eV (.F.Gatti, Nucl. Phys. B91 (2001) 293)

future: eV resolution by s.c. transition sensors. (now typically: $\Delta E = 30 \text{ eV}$)

MiBeta (E. Fiorini et al., Mailand, Como)

- AgReO₄ (10 * 250 350 mg)
- Final result of Mibeta after 1 year data taking with 10 detectors : (M. Sisti et al., NIMA520 (2004) 125)

 $m_v^2 = -112 \pm 207 \pm 90 \text{ eV}^2 \implies m_v < 15 \text{ eV} (90\% \text{CL})$

 β environmental fine structure (BEFS) seen

The Mainz Neutrino Mass Experiment 1997-2001

v-Gruppe 2001: J. Bonn B. Bornschein* L. Bornschein* B. Flatt Ch. Kraus B. Müller** E.W. Otten J.P.Schall Th. Thümmler** Ch. Weinheimer**

Mainzer

* \rightarrow FZ Karlsruhe ** \rightarrow Univ. Bonn

- T₂ film at 1.86 K
- quench-condensed on graphite (HOPG)
- 45 nm thick (\approx 130ML), area 2cm²
- thickness determination by ellipsometry

Final Mainz result

Improvement of S/Bg by factor 10

Longterm measurements in 1998,1999,2001 (analysed: $\Sigma t = 20$ weeks)

Stable background: HF pulses on electrode inbetween single measurements of 20s

Using neighbour excitation from calculation (Kolos et al., Phys. Rev. A37 (1988) 2297) $m^{2}(v) = -1.2 \pm 2.2 \pm 2.1 \text{ eV}^{2} \implies m(v) < 2.2 \text{ eV} (95\% \text{ C.L.})$ Ch. Weinheimer, Nucl. Phys. B (Proc. Suppl.) 118 (2003) 279, C. Kraus et al., Nucl. Phys. B (Proc. Suppl.) 118 (2003) 482

Neighbour excitation amplitude from own tritium β spectrum $m^2(\nu) = -0.7 \pm 2.2 \pm 2.1 \text{ eV}^2 \implies m(\nu) < 2.3 \text{ eV} (95\% \text{ C.L.})$ C. Kraus, EPS HEP03, Aachen, July 2003

final publication will come soon:C. Kraus et al.

The <u>Karlsruhe Tritium Neutrino experiment KATRIN</u>

(Letter of Intent: hep-ex/0109033)

Physics Aim:

Karlsnine Thitium Neutri Sensitivity on neutrino mass scale: $m(v) \leq 1eV$ new, since 12/2002 higher energy resolution: $\Delta E \approx 1 \text{eV}$ since $E/\Delta E \sim A_{spectrometer}$ \Rightarrow larger spectrometer

relevant region below endpoint becomes smaller even less count rate dN/dt ~ A_{spectrometer}

 \Rightarrow larger spectrometer

Molecular tritium sources

Pre and main spectrometer

Main spectrometer

- Energy resolution: $\Delta E = 0.93 \text{ eV}$
- high luminosity: $L = A_{seff} \Delta \Omega / 4\pi = A_{analyse} \Delta E / (2E) = 20 \text{ cm}^2$
- Ultrahigh vacuum requirements (Background) p < 10⁻¹¹ mbar
- "simple" construction: vacuum vessel at HV = electrode + "massless" screening electrode
- industry study

Pre spectrometer:

- Transmission of electron with highest energy only (10⁻⁷ part in last 100 eV)
 Reduction of coattoring probability in main energy
 - \Rightarrow Reduction of scattering probaility in main spectrometer
 - \Rightarrow Reduction of background
- only moderate energy resolution required: $\Delta E = 50 \text{ eV}$
- Test of new ideas (XHV, shape of electrodes, avoid and remove of trapped particles, ...)

Statistical uncertainty

Systematic uncertainties As smaller m(v)

as smaller the region of interest below endpoint E₀

- ⇒ Excited electronic final states does not play a role (ΔE_{exc} > 27 eV)
- ⇒ Inelastic scattering in T_2 is small ($\Delta E_{inel.} > 12eV \Rightarrow$ largest interval 25eV: 2%)
- \Rightarrow One well-defined final state (similiar to cryo detectors)
- Is only true, since MAC-E-Filter response function has no tails

Still systematic uncertainties: inelastic scattering, column density retarding high voltage tritium purity potential in windowless gaseous tritium source

Systematic uncertainties

KATRIN's sensitivity (since June 2003):

- higher T2 purity
- larger statistics
- optimized measurement point distribution
- smaller systematic uncertainties

 \Rightarrow sensitivity on m(v_e)

 $\approx 0.20 \text{ eV/c}^2$

(about equal contribution from stat. and syst. uncertainties) (90% C.L. upper limit for $m(v_e) = 0$)

20

 $m(v_{\rm e})$ = 0.30eV observable with 3σ

 $m(v_e) = 0.35eV$ observable with 5σ

potential in windowiess gaseous tritium source

Status and schedule of Katrin

- 2001 Presentation at Bad Liebenzell Workshop Foundation of KATRIN collaboration Letter of Intent (hep-ex/0109033) First, but significant funds by BMBF, FZ Karlsruhe
- 2002 Very positive report of International Review Panel
- 2003 Background investigations at Mainz Setup of pre spectrometer at FZK
- 2004 Reviewing, design report
- 2004 2008 Setup of major KATRIN components: WGTS, transport system, main spectrometer, detector
- 2008 Commissioning at start of data taking

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Status of hardware components

studies

Setup of pre spectrometer at FZ Karlsruhe

Electric screening by "massless" wire electrode

Secondary electrons from wall/electrode by cosmic rays, environmental radioactivity, ... wire electrode on slightly more negative potential

First realisation: Mainz III

Summary

Neutrino masses from astrophysics and cosmology:

• now: $\Sigma m(v_i) < 0.7 - 2.2 \text{ eV oder } \Sigma m(v_i) > 0$ (WMAP, 2dF/SDDS, ...)

(Planck, SDSS)

- in 5-10 years: $\Delta \Sigma m(v_i) \approx 0.1 \text{ eV}$?
- but always model-dependent

Ονββ:

- very sensitive, but dependent on phases, mixing, M_{nucl}
- Nemo3, Cuoricino started, signal from Hd-Moscow at $m_{ee} = 0.4 \text{ eV}$?

β endpoint spectrum: only model independent method:

- Cryogenic detectors with Rhenium: fascinating new approach, how far do they go?
- Mainz finished: $m(v_e) < 2.3 \text{ eV}$ (95% C.L.)
- KATRIN: A large tritium β neutrino mass experiment with sub-eV sensitivity $m(v_e) < 0.2 \text{ eV}$ or $m(v_e) > 0 \text{ eV}$ (for $m(v_e) \ge 0.30 \text{ eV}$ @ 3σ)

 \Rightarrow key experiment w.r.t. absolute neutrino mass scale